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We discuss the diffusion of a particle on deterministic and quasirandom fractal structures de-
signed to mimic the properties of diffusion-limited aggregates. In this paper we deal with unbiased
transport, while the following paper deals with transport in the presence of an external field. Our
method is based on a renormalization procedure that allows us to calculate the scaling properties
relating distance and time. We calculate the random-walk dimension d., for a variety of structures

and show how this dimension depends on the branching properties of the model.

We find that

random walks on these structures become slower as the branching intricacies of the model increase.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

Physical systems with disorder do not possess trans-
lational symmetry. Instead, many disordered systems
show scale invariance, at least within some finite range
of scales. Although not all disordered systems are nec-
essarily fractal, the fact that fractal structures are char-
acterized by scale invariance suggests that the study of
physical phenomena in the latter may shed some light
on the understanding of such phenomena in the former.
Our ultimate purpose is to gain a greater understanding
of transport processes in disordered media, a goal that
we hope to approach by considering such processes on
fractal structures.

Diffusion-limited aggregation (DLA), a growth process
first introduced by Witten and Sanders [1], yields fractal
structures that have been of enormous interest because
they appear to mimic a large number of naturally oc-
curring systems. In this process, monomers start from
infinity and diffuse by performing a random walk until
they stick to the growing cluster. Physical phenomena
that exhibit properties similar to DLA include electrode-
position [2], dielectric breakdown [3], crystallization [4,5],
and viscous fingering [6]. As a result, DLA and random
walks on diffusion-limited aggregates have been the sub-
ject of extensive numerical studies in the past decade [7].

Scale invariance in random fractals such as DLA’s and
in disordered physical systems holds only in an approx-
imate statistical sense: such fractals look approrimately
equal (but not necessarily identical) on all scales. De-
terministic and quasirandom fractals, on the other hand,
show strict scale invariances which facilitate the use of
analytic techniques for the study of transport on such
systems [7]. In particular, it is possible to construct a
renormalization procedure for continuous-time random
walks on deterministic and quasirandom fractal struc-
tures. The renormalization is established between the
probability densities of waiting times on an original (frac-
tal) lattice and on the lattice that remains after a particu-
lar set of sites has been removed (“decimated” [8] lattice).
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This procedure was first developed by Machta [9] for a
one-dimensional lattice and later by Van den Broeck [10]
for a number of finitely ramified fractals. Van den Broeck
derived the appropriate renormalization equations and
was able to solve a number of them analytically to find
asymptotic first-passage-time distributions on these frac-
tals. We have generalized his procedure to account for
the presence of a field. This generalization introduces
spatial anisotropies that ultimately lead to renormaliza-
tion schemes involving matrices of hopping probabilities.
Specifically, we considered the first-passage-time distri-
bution on a Sierpinski gasket in the presence of an ex-
ternal field [11]. For this system, we found the scaling
connections between time, distance and field intensity.

Herein we extend the previous analysis to unbiased
walks on two model systems. The first is a determinis-
tic fractal growth model first introduced by Mandelbrot
and Vicsek (MV) as a DLA analog [12]. The second is
a quasirandom model that introduces space stochastic-
ity and in some important ways attempts to mimic the
shapes of random fractals and in particular of some DLA
type of structures. Transport on these structures in the
presence of an external field is studied in the following
paper [13].

In Sec. IT we describe both the MV deterministic model
of DLA and the quasirandom model that we propose. In
Sec. III we discuss in detail the case of isotropic diffusion
on the MV model. Isotropic diffusion on the quasirandom
model is discussed in Sec. IV. We summarize our results
in Sec. V.

II. DETERMINISTIC AND QUASIRANDOM DLA
MODELS

A. MV model

The MV model as originally described in 1989 [12] con-
sists of a generator and a simple branching structure
made of three units of the same length which replaces
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each unit obtained at a previous step. This replacement
follows two construction rules: (1) none of the branches
may point in a direction below the horizontal, and (2) no
branches are allowed to overlap. To satisfy these rules,
the branching structure at each step must in fact be ei-
ther the generator or its mirror image.

We generalize the original MV model to d dimensions,
where d is the embedding Euclidean dimension. The
structure involves a generator made of d + 1 units which
replaces each unit obtained at a previous step. A MV
model in two dimensions and one in three dimensions,
both at their third stage of construction, have been drawn
in Figs. 1(a) and 1(b).

B. Quasirandom models

We propose a quasirandom model and a generalized
quasirandom model as follows.

The first [Fig. 1(c)] is the quasirandom fractal, for
which there are two generators, one consisting of a
branching structure made of d 4 1 units and another one
consisting of two collinear units. Each unit is replaced by
the former with probability v and by the latter with prob-
ability (1 — v). The second case is the generalized quasi-
random fractal for which there are d generators consist-
ing of branching structures ranging from 2 to d + 1 units
and associated probabilities Py, £ = 1,...,d. A unit
is then replaced by a k-unit generator with probability
Py._1 where the normalization condition Z‘,:zl P, =1
must hold. For d = 2 these two models are of course
identical.

The replacement of each unit by a given generator fol-
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FIG. 1. (a) MV model in two dimensions; (b) generalized
MYV model in three dimensions; (c) a quasirandom fractal in
two dimensions. All are shown at their third stage of con-
struction.

lows in all cases the construction rules of the MV model.
The angle between two branches of the generator is fixed
at the beginning of the construction and remains con-
stant during the entire process. Further, each unit in
the generator is of identical length and scaled down by
a factor of 2 from the length of the unit obtained at the
previous step. We deal with isotropic diffusion on these
model structures. In the following paper [13] we also an-
alyze anisotropic diffusion on the MV and quasirandom
fractals in two dimensions. It is important to note that all
the models described above are special cases of the gen-
eralized quasirandom fractal. We have separated them
only for the sake of clarity in the discussion to follow.

III. RANDOM WALKS ON THE MV MODEL
A. Fractal dimension

In order to describe the properties of a random walk
(or diffusion) on a fractal, it is first necessary to establish
its fractal dimension dy. This is done in the usual way
by determining the scaling of the mass when a unit is
replaced by its generators. In the case of the MV model
the mass of unit j is given in terms of the masses of the
generators that replace it by

d+1

m;(L) = Zmi(L/Z). (3.1)

Since for any unit j the masses of the generators are all
equal and independent of j, that is, m; = m, the sum can
be done trivially and we can dispense with subscripts to
obtain m(L) = (d + 1)m(L/2). The scaling of the length
by a factor of 2 thus yields a scaling of the mass by a
factor of (d + 1). Therefore the fractal dimension for the
MYV fractal in any embedding Euclidean dimension d is

_In(d+1)

df = ) (3.2)

B. Renormalization equation and mean waiting time

The continuous-time random-walk formalism [14]
based on waiting-time probability densities is sufficiently
general to deal with a wide class of random walks. A
particle starting at the origin at ¢ = 0 performs a nearest-
neighbor random walk on a discrete lattice. The waiting
time or first-passage time between nearest-neighbor hops
is a random variable governed by the hopping-time dis-
tribution ¥o(¢). Suppose that the nearest neighbors are
removed from explicit consideration, that is, we now fo-
cus on the waiting time for hopping between next-nearest
neighbors. This time is again a random variable, but
the new hopping-time distribution ; (¢) will be different
from 1o(t). The relation between the new distribution
and the previous one is the renormalization equation that
we are interested in formulating [9,10] to describe trans-
port on the system.
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The zero subscript that we have associated with the
waiting-time distribution is to be read as “original struc-
ture,” i.e., the structure with N generations of branches.
Let us now implement the following decimation proce-
dure: (1) consider an Nth generation site (the origin of
our walk, called a “vertex”), its nearest set of branches,
and its next-nearest neighbors; (2) remove from explicit
consideration the nearest neighbors that connect the cho-
sen vertex to its next-nearest neighbors. Note that this
also removes from explicit consideration the branches
that emerge from the nearest neighbors; (3) calculate the
first-passage-time distribution from the chosen vertex to
any of its next-nearest neighbors (which have now be-
come its nearest neighbors). This last calculation must
include all the possible paths connecting the chosen ver-
tex and its next-nearest neighbors through the nearest
neighbors that have been removed from explicit consid-
eration. The new results are labeled by the subscript 1.
These results allow us to calculate the first-passage-time
properties to next-nearest neighbors. Suppose we now
repeat this decimation procedure at the next generation.
A calculation involving all possible paths on the (N —1)st
generation structure now yields the hopping probability
densities appropriate to the (N — 2)nd generation struc-
ture. These distributions contain the first-passage-time
properties for distances of “length” 4 on the original lat-
tice, i.e., each decimation doubles the relevant distances.
An N-fold repetition of the procedure then yields infor-
J

Y1(t) =

Jj=

where the walker takes an even number of steps 25 with
j=1,2,3,... and N; = 297! is the number of different
walks of length 27 that can bring a walker to the next-
nearest neighbor, just as in a one-dimensional walk [10].
The factor 1/3 associated with every pair of steps reflects
the fact that a walker can leave a dead-end vertex in only
one way (from 0 to 1), but at the next step the walker
has three choices to make (1 - 1,1 — 0, 1 — a), each
with probability 1/3. Two of these possible choices (1
— 1’ and 1 — 0) take the walker to a dead-end and the
process starts again, and the third (1 — a) takes it to the
next-nearest neighbor that ends the walk. The Laplace
transform of Eq. (3.3) is

1/71(5) = Z “N:%J‘ ~§

Jj=1

¥é(s)
3 — 292(s)
The decimation procedure at each generation of the
process yields the same relation between the waiting-time

distributions of two succeeding generations, so that the
result Eq. (3.4) can immediately be generalized to

311(3) ]
3—2¢97_4(s)

One can perform the same analysis for the dead-end
vertex in the higher-dimensional MV model. In this case,

i(s) = (3.4)

1Z’n(s) = (8.5)

sz dt dtyo(t — tzj_1) - - - o(ta — t1)o(t1),
1 /2]1 / 1%o 25—1 o\t2 1)%o\l1

mation on first-passage times from one extreme of the
original structure to the other. Note that in this proce-

“dure we fix the total size of the structure; to consider an

increasing number of steps in order to calculate asymp-
totic properties of the walk we increase the number of
branch generations V.

Let us first implement the decimation procedure on the
MV model to find the renormalization equation. First,
we identify two types of vertices in the MV model, the
“dead-end” vertex which has one nearest neighbor and
the “normal” vertex which has three nearest neighbors.
In order to illustrate the calculation we focus first on the
dead-end type of vertex. Steps 1 and 2 of the decima-
tion procedure can now easily be visualized from Fig. 2.
We have centered our attention on a particular vertex (0)
and have marked its only nearest neighbor (1) and asso-
ciated emerging branch (which ends at site 1’), both of
which we want to remove from consideration. In order to
calculate the probability density of the decimated lattice,
we have to sum over all the possible paths to reach the
next-nearest neighbor (a) in time ¢. This involves a con-
volution of factors of the undecimated densities [10,11].
It is important to note that next-nearest neighbors can
not be reached in an uneven number of steps, that is,
the sum of all possibles paths only includes paths that
involve an even number of steps.

Following this procedure, one obtains for 4, (¢) the con-
volution

(3.3)

[
the Laplace transform of the hopping probability per pair
of steps is 3 +11/;0(s)¢0( s) and the number of different
paths involving an even number of steps is Np; = di—t.
Instead of Eq. (3.5) one then obtains the renormalization
equation

~721 1(s) ]
(d+1) - dg2_,(s)

Pn(s) = (3.6)

Consider now a walk that begins at a normal vertex,
again indicated as vertex 0 in Fig. 2(b). The following
relation can immediately be constructed for the waiting
time distribution to nearest neighbors (1 or 2 or 3) and
next-nearest neighbors (a, b, or ¢):

%=E 2’%+m¢ﬂ (3.7)

[a2 similar relation involving 4, on both sides can be
constructed for the dead-end vertex—it again leads, of
course, to the result (3.4)]. The argument s has been
omitted in Eq. (3.7) and will henceforth be omitted un-
less required for clarity. This relation is understood as
follows. The first step takes the walker to one of the
nearest neighbors 1, 2, or 3, and the Laplace transform
of the associated waiting-time distribution for this first
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FIG. 2. Decimation procedure for the MV model. (a)
The origin 0 is a “dead-end” vertex. Sites 1 and 1’ are
removed from explicit consideration by summing over all
paths leading through them toward the final destination.
Next-nearest-neighbor site a is the final destination of the
walk. (b) The origin 0 is a “normal” vertex. The numbered
sites are removed from explicit consideration by summing over
all the paths through them that lead to either of the three let-
tered sites.

step is ¥o [first term on the right-hand side of Eq. (3.7)].
Having reached a nearest neighbor, the walker can now
take any number of even steps up and down the branch
that emerges from that nearest neighbor (i.e., between
1 and 1, 2 and 2/, or 3 and 3’). The associated wait-
ing time factor is 1Z'§j and the associated probability per
pair of steps is 1/3 (as in the dead-end vertex discus-
sion). This accounts for the second and third terms on
the right-hand side of (3.7). Then the walker can either
go to the next-nearest neighbor that ends the walk (prob-
ability 1/3 and waiting time factor 1), as embodied in
the first term in square brackets, or it can return to the
original vertex 0, from where the walk begins again, as
embodied in the second term in square brackets. The
sum over j in Eq. (3.7) can be carried out as before, and
upon solving for %, we again obtain the relation between
11 and o given in Eq. (3.4). Generalization to further
generations then again yields (3.5) and the MV model
again gives (3.6). Thus the renormalization equation is
independent of the nature of the starting site of the walk.
Note also that the known renormalization equations for
embedding Euclidean dimensions 1 (see Refs. [9,10]) and
2 are recovered from Eq. (3.6).

All the properties of a random walk on the MV struc-
ture can be deduced from the solution %, (s) of the renor-
malization flow (3.6). Of particular interest is the solu-
tion for large n since this yields information about the
properties of a random walk at long times and over long
distances. Although for the particular case (3.6) it is
possible to find an analytic form for the solution at least
for small s (which is all that is needed for the analysis
of the long-time behavior) [10], for the more complicated
renormalization equations that we encounter below this
becomes more difficult. We shall be less ambitious and
instead concentrate on using the renormalization equa-

tion to find ¥,, = 4, (s =0) and 4%'3(—3)[5:0. The former

is the probability that a hop from the origin to any nth
neighbor takes place at all at any time,

oo
v, = / dtsp (t) = Pu(s = 0), (3.8)
0
while the latter is the mean time for the walker to first
reach any one of the nth neighbors of the origin (also
called the mean waiting time or the mean first-passage
time),

d‘zn(s)

(t) = A v (t)dt = s (3.9)

=0

Thus we first note that the fixed point of Egs. (3.5)
and (3.6) at s = 0 (i.e., the value of ¥, for all n) is unity,
that is, the hopping probability from vertex zero to one
or another of an arbitrary equidistant set of neighbors is
unity. Note, however, that the hopping probability to a
given one of m equidistant neighbors is 1/m.

Next consider the behavior of the mean first-passage
time to ever more distant neighbors. From (3.6) one can
immediately relate the waiting time after the nth deci-
mation to that following the (n — 1)st decimation using
the chain rule

d~n ~’". ~7l—
A | _ 0¥ Y1 , (3.10)
ds =0 8¢n~1 s=0 ds 8=0
that is,
Y
(tny = -2 (tn1). (3.11)
6"/)71—1 s=0

From this equation it is easy to see that the factor by
which the first-passage time scales from decimation to
decimation is given by the term 53#

n—1 5=0
factor can be calculated immediately from Eq. (3.6) to
obtain

. This scaling

Iy,
h =2(d+1) (3.12)
8¢n—1 s=0
and hence
(tn) = 2(d + 1){tn-1), (3.13)
that is,
(ta) = [2(d + 1)]"t0, (3.14)
where t, = fooo tio(t)dt is the mean waiting time for

a walker to move to a nearest neighbor on the original
structure. Recalling that each decimation doubles the
distance, we can use this result to calculate the random-
walk fractal dimension d,, [15]. Thus, denoting distances
by I and times by t we fix d,, by requiring that I% = Dt
and that (2{)% = 2(d + 1)Dt, where D is a constant of
proportionality. Alternatively, if l; denotes the nearest-
neighbor distance on the original structure, then one re-
quires that (27lp)% = D[2(d + 1)]"to with D = I3 /t,.
In either case this leads to the result
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In(d +1)

dy =
In2

+1. (3.15)
Note that with Eq. (3.2) this result agrees with the gen-
eral relation dy = d,, — 1 for loopless structures [15].
Further, the spectral dimension d, can be calculated from
the relation (definition) d, = %ii:

 2In(d+1)
b= LR+ (3.16)

The spectral dimension takes on values smaller than 2,
that is, a particle on an MV structure always performs a
compact random walk.

It is useful to note the relation between the random
walk fractal dimension obtained here in (3.15) and the
values of d,, for other familiar cases. Thus, for a random
walk on a Euclidean system of any dimension d,, = 2.
For a Sierpinski gasket one finds d, = In5/1n2 = 2.322,
that is, it takes longer to cover a given distance on the
latter than on the former [10,16]. For the MV structure
embedded in two dimensions we find d,, = 2.585, that
is, passage across a given distance is (not surprisingly in
view of the presence of dead ends) even slower than on
a Sierpinski gasket. For the MV structure embedded in
three dimensions we have d,, = 3, which indicates an
even longer traversal time of a given distance.

V. ISOTROPIC RANDOM WALKS ON
QUASIRANDOM STRUCTURES

A. Fractal dimensions

The quasirandom model introduced earlier consists of
two generators. In order to calculate the fractal dimen-
sion of a quasirandom structure we need to average over
the occurrence of these two generators. This can be done
using the ideas of scaling of the mass and the length used
earlier in the calculation of the fractal dimension for the
MYV model. Since the masses of the generator segments
are still all equal at each generation, we can again imple-
ment the arguments surrounding Eq. (3.1) and dispense
with subscripts. The decimation process is then simply
indicated by the scaling of the length. Denoting the aver-
age over the occurrence of the two generators by brackets,
the mass relation for the quasirandom model then is

k
m(L)) =Y Peo1 Y m(L/2).
k =1

Here k can take on two values, one for each of the gener-
ators, and Pj_; is the probability of occurrence of that
generator in the structure. For the generator with two
collinear units £ = 2 and the probability of occurrence
of this generator is P; = (1 — v); for the generator with
(d + 1) branches k = d + 1 and the probability of occur-
rence is Py = v. Note that the choice v = 1 recovers the
MYV model. Thus Eq. (4.1) can be rewritten as

(4.1)

(m(L)) = m(L/2) Y kPiy = [(d — v + 2Am(L/2).

k
(4.2)

An increase of the length by a factor of 2 therefore leads
to an average increase of the mass by a factor of [(d —
1)v + 2]. The resultant fractal dimension is

In(d - v +2]

d =
f In2

(4.3)

The same approach can be implemented for the gener-
alized quasirandom model. Equation (4.1) still describes
the mass scaling, but now k can take on all values be-
tween 2 and d + 1 with a probability P, of having a
generator made of k + 1 units, with Zizl pr = 1. In
place of Eq. (4.2) we now have

d
(m(L)) =m(L/2) > (k +1)Ps.

k=1

(4.4)

Thus we obtain for the fractal dimension of the general-
ized quasirandom model

d
In (Z(k + 1)Pk)
ds = .

k=1
In2

(4.5)

Note that all the models discussed so far can be recovered
from the generalized quasirandom model by appropriate
choice of the generator probabilities P and of the Eu-
clidean embedding dimension d.

B. Renormalization equations and mean waiting
times

Here we again implement the decimation procedure
discussed in Sec. III B to calculate the renormalization
equations for waiting time distributions. For this pur-
pose, we note that there appear three different types
of vertices in the quasirandom model, which have been
drawn in Fig. 3 for an embedding dimension d = 2.
Contrary to the MV model where the relation be-
tween waiting-time distributions for subsequent gener-
ations turned out to be independent of the starting ver-
tex, the distributions for the three vertices here are no
longer equal nor are they simply related to one another.
We expand our notation to incorporate these different
distributions. Thus we denote the waiting-time distri-
bution for a walk originating from a dead-end vertex
ALY (t) (the superscript reflects the fact that there is only
one way to leave such a vertex). Waiting-time distribu-
tions associated with vertices consisting of 7 units with
i=2,3,...,d + 1 are similarly denoted by @ (t).

Consider first the renormalization equations for a walk
that originates at a dead-end vertex. There are two
contributions to ,(11)( t) as indicated in Fig. 3(a): one
arises from the substitution of a unit by the two-collinear-
unit generator and the other from substitution by the
(d + 1)-unit generator. The former occurs with probabil-
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FIG. 3. Decimation procedure for the quasirandom MV
model in embedding dimension d = 2. (a) The two prop-
erly weighted possible configurations with a dead-end vertex
as the origin. The walk ends at site a. (b) Three possible
configurations if the origin has two emerging branches. The
walk ends at either a or b. (c) Four possible configurations if
the origin has three emerging branches. The walk ends at a,
b, or c.
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ity 1—wv, the latter with probability v. The calculation of
the renormalization relation is detailed in the Appendix,
where we obtain the relation [see Eq. (A5)]

,(/)(1) ¢(2) 1/1 ¢(3)
EONEN Y3 EPSONION
Next consider a walker who leaves a vertex 0 from

which two units emerge. The walker encounters one of

the three situations shown in Fig. 3(b). With obvious
notation we thus have

J =

M = (1- v); . (4.6)

- '0)215(2 1— v)2+ 2U(1 - U)1/)7(1 ,w(l—v) +v ¢T(7'272’2
(4.7)

The factor 2 in the v(1 —v) contribution reflects the fact
that the side branch can emerge from nearest neighbor 1
or from 2. The three contributions to (4.7) are calculated
in the Appendix and are given in Egs. (A8), (A10), and
(A12).

Finally, consider a vertex 0 from which three units
emerge. Now the walker encounters one of the four situ-
ations shown in Fig. 3(c):

~ (3
P = (1= 0P e +30(1— )2,
+302(1— U)lby(z,l?(l—v) + 0353

n,v3"’

(4.8)

These four contributions are also calculated in the Ap-
pendix and are given in Egs. (A15), (A17), (A19), and
(A21).

The properties of a random walk on the quasirandom
structure can again be deduced from the renormalization
equations. We note that, although the properties of a
walk now in general depend on the starting site, the fixed
points of Egs. (4.6), and (4.7) with Egs. (A8), (A10), and
(A12) and of Eq. (4.8) with Egs. (A15), (A17), (A19),
and (A21) are all unity. Thus the hopping probability

\Ilsf ) from any initial site to any one of a set of m equidis-
tant neighbors is again unity, and the probability to a
particular neighbor of this set is 1/m.

The mean first-passage time to reach an nth neighbor
of a vertex

<t$:>)=~1/ﬁ‘ﬂ ; 1=1,2,...,d+1 (4.9)
ds 8=0

in general depends on the type of vertex from which the
walk starts (i.e., it depends on 7), and the renormalization
equations yield a set of (d 4+ 1) equations connecting the
times after the nth decimation to those of the (n — 1)st
decimation:

(te) (tas)
<t . J(0) <t", ! (4.10)
() (HD)y

The (d+ 1) x (d + 1) Jacobian matrix J(0) has elements
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,(/)(1) (S)
oy 27G) () 1(s) o
that can be constructed directly from the renormalization

equations [cf. Egs. (3.11)—(3.14)]. Thus, for example, for
d = 2 our renormalization equations yield

J;;(0) = (4.11)

2+v  2(1-w) 3v
J(0) = v 2(2 —v) 3v (4.12)
v 2(1 —v) 2+ 3v

To find the dominant scaling behavior one notes that the
solution of (4.10) in analogy with (3.14) is of the form

Dy = (AN + 4PNz 4+ 4D 2 o,

9, (4.13)

where to is again the mean hopping time on the original
structure. Here the ); are the eigenvalues of J(0) and the

n-independent coefficients A can easily be obtained in
the usual way via the diagonalization of J(0). For large
n, the dominant growth of the ( ¢ )) is associated with
the largest eigenvalue, say A;, which thus determines the
scaling of all the (tn)) independently of the vertex of
origin:

(@Y ~ AT, (4.14)

The random-walk dimension can thus be read directly
from this result [cf. Eq. (3.14) and discussion following]

In Al
w =15 (4.15)
We have calculated the largest eigenvalue of J(0) for
our quasirandom model and find (for arbitrary d) that
A1 = 2[(d — 1)v + 2] (for d = 2 the other two eigenvalues
are degenerate and are given by Ay = A3 = 2; the first
eigenvalue is therefore sufficiently larger than the other
two that it clearly dominates the behavior of the mean
waiting time essentially immediately). Thus

In[(d — 1)v + 2]

o = In2

+ 1. (4.16)
Note that with (4.3) this result again agrees with the
general relation dy = d,, — 1 for loopless structures [15].

It is instructive to compare the value of the random-
walk fractal dimension obtained here and the value of
dy found for the MV model in Eq. (3.15). Whenv =1
the two results are, of course, the same since the quasi-
random model then reduces to the MV structure—in
this case we found earlier that for d = 2, for example,
dw = 2.585 while for d = 3 we had d,, = 3. When
v = 0 the quasirandom model simply becomes a Eu-
clidean structure and the random-walk dimension accord-
ingly reduces to d,, = 2. More interesting is any interme-
diate situation. For example, when v = 1/2, indicating a
branching structure with equal probabilities of collinear
and treelike generators, we find that d,, = 2.32 for d = 2
and d,, = 2.58 for d = 3. A walk across a given distance
on a quasirandom fractal structure is clearly slower than

on a Euclidean structure but faster than on an MV struc-
ture embedded in the same Euclidean dimension.

We conclude our discussion of isotropic diffusion by
calculating the renormalization equation for the dead-
end vertex in the generalized quasirandom model as an
illustration of this generalization. This calculation in-
volves a straightforward extension of the previous analy-
sis. A particular unit is substituted by generators made
of k = 2,3,...,d + 1 units with respective probabilities
P k—1-°

d
DTN

k=1

(4.17)

The reasoning that leads to Egs. (A2) and (A4) can im-
mediately be generalized to this situation (see the Ap-
pendix) to yield

d 1/)(k+1)1/)(1)

30 =S p, .
kgl kE+1— w("’*‘l),{/)(l)

(4.18)

Equation (4.18) and the corresponding ones for the other

1/3,(!“) are the most general forms of the isotropic analy-
sis. The scaling of the time can again be found from the

(k)>

to the (t(nk_)l) and leads to a random-walk dimension that
again agrees with that obtained from dy in (4.5) via the
loopless structure relation dy = d,, — 1:

d
In (Z(k + 1)Pk)
d

largest eigenvalue of the Jacobian that connects the (¢

k=1
v In2 +1

Thus, in general and of course not surprisingly the walk
becomes more laborious (slower) as the embedding di-
mension increases and, in a given dimension, if the struc-
ture is more profusely branched.

Note that the associated spectral dimension d, =
2dy/d,, for the quasirandom structure is smaller than 2
for any choice of the P’s and of the embedding dimen-
sion d and therefore a walker on these structures always
performs a compact random walk.

(4.19)

V. CONCLUSIONS

We have calculated the renormalization equations for
unbiased random walks on MV structures and have gen-
eralized the discussion to random but loopless DLA-like
structures. From these renormalization equations we
have calculated the mean time that it takes a random
walker to first cover a given distance and from this cal-
culation we have in turn extracted an expression for the
random-walk dimension d,, which determines the scaling
between the time and the displacement. In all cases we
verify the relation dy = d,,—1 valid for loopless structures
[15]. We can of course use the renormalization equations
to calculate higher moment properties of our walk such
as, for instance, variances of the mean first-passage time.
We have not done so in this paper, but rather see this as
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setting the framework for the calculations carried out in
the companion paper [13] for transport in the presence
of an external field. With a field the scaling relations
become more complex and direction dependent.

We find that in the unbiased case the behavior of
the distance-time scaling is entirely determined by the
weighted “branch average”

d
P=> (k+1)P, (5.1)

k=1

where Py is the probability of occurrence of a generator
with k+1 branches. This average is a measure of the pro-
liferation of branches in the structure. After a long time
has gone by and the walker has sampled all the possible
branching structures it does not matter precisely how
these branches are arranged—indeed they could be ar-
ranged randomly or different parts of the structure could
each contain only one kind of branch. Independently of
the site of origin of the walk, we find that the random
walk dimension is given by

1
d, = 2P 4.

2 (5.2)

Higher moments of the hopping time distribution in
general depend on more detailed features of the branch-
ing structure. Furthermore, in the presence of an external
field even the mean first-passage time depends on more
detailed features of the structure including the angle of
the branches relative to the backbone. This dependence
is developed further in the following paper [13]. Indeed,
Mandelbrot and Vicsek [12] also proposed a model in
which, whenever the angle between branches is smaller
than i’ﬂ', randomness is included in the branching ori-
entation. That model is also covered by our isotropic
analysis, but the effects of such angle randomness would
become apparent in the presence of a field. Our isotropic
analysis also holds for any branching structure that has
a common site from where all the branches emerge. For
all these models Eq. (5.2) is valid.

The similarities in behavior reflected in these results
for models that are structurally quite different is in some
ways quite encouraging toward our goal of achieving
a better understanding of transport phenomena in the
real DLA structure. We could further generalize our
quasirandom model to admit of generators consisting of
2,...,2d units (where 2d is the maximum number of
neighbors in the embedding Euclidean dimension). One
can use this generalization to construct a structure that
obeys the MV rules of no overlap of branches and of no
branches appearing below the horizontal hyperplane. In
particular, when d = 2 we could construct a model where
each branch is replaced at the next generation by a gen-
erator consisting of 2, 3, or 4 branches with probabilities
Py, Py, and P3, respectively. These probabilities as well
as the branching angles would be chosen as suggested
by experimental and numerical observations [17] so as to
most closely mimic the DLA. In making these choices one
must observe some restrictions: there is a constraint on
the values of P3 in order to obey the no overlap rule, and
the angle between two branches of the four-unit genera-
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tor must always be smaller than % in order to ensure that
there be no branches below the horizontal. The fractal
dimension for this model is again of the form

2d—1
In k P
Cmp (Z (k+1) k)

_ _ k=1
f In2 In2

The random-walk dimension for the unbiased case again
follows from (5.3) via the relation df = d,, — 1, while
the properties of this structure in the biased case can be
calculated using the procedure of the following paper [13].
Note again that the fact that the structures considered
in this paper are loopless implies that dy fixes the value
of the spectral dimension d; = 2dy¢/d,,.

Finally, we stress that the results obtained here for the
various loopless structures are at least roughly consistent
with those obtained for a DLA structure by direct sim-
ulations [18]. We can clearly choose probabilities Py in
Eq. (5.3) that lead to the value of dy appropriate to DLA.
This value (to within a few percent of error) has been
found from the numerical simulations to be [3] df = 1.7
for d = 2 and df = 2.4 for d = 3. Independent simula-
tions of the random-walk dimension yield d,, = 2.56 for
d = 2 and d,, = 3.33 for d = 3. These latter numbers
are not too different from dy + 1 = 2.72 for d = 2 and
dg +1 = 3.4 for d = 3 appropriate to loopless structures.
The spectral dimension, again calculated independently
for the DLA, is in the range d; = 1.2—1.35 for d = 2 and
ds = 1.3 — 1.44 for d = 3 (depending on the way that it
is calculated). The relation d; = 2d¢/(ds + 1) yields the
value 1.26 for d = 2 and 1.4 for d = 3, both within the
calculated ranges.

(5.3)
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APPENDIX: RENORMALIZATION EQUATIONS
FOR ISOTROPIC MODELS

In this appendix we derive the renormalization equa-

tions for the waiting-time distributions w,(,k) for the dif-
ferent models considered in the main text. We begin
with the waiting-time distributions ¢7(11), ,(12), and 1,b,({3)
for walks originating on the three different types of ver-
tices that arise in the quasirandom model discussed in
Sec. IV. We concentrate on the case d = 2 shown in
Fig. 3.

Consider first a walk that originates at a dead-end
vertex. The two possible configurations that arise re-
spectively with probabilities v and 1 — v are shown in
Fig. 3(a). Instead of first subscripting the waiting-time
distributions with 0 for the original lattice and 1 for the
once decimated lattice and then observing that the same
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relations hold for further generations, we use the sub-
scripts n — 1 and n from the outset. Thus we wish to
calculate the waiting-time distribution 1/1n )(t) for pas-
sage from the dead-end vertex 0 to site a in terms of the
waiting-time distributions for walks through site 1 and
where appropriate through site 1’. For the moment we
label the two situations that appear in Fig. 3(a) by a fur-
ther subscript, v and 1 — v, respectively. Thus consider

the waiting-time distribution 1/17(11’)1_1,(15) for a walker to
go from the vertex 0 to the next-nearest neighbor a for
the first of the two cases in the figure. We construct and

then explain the relation
30, = 0 2P, + 9P 9N,

where we have omitted the argument s. To reach a, the
walker must first go to site 1 (probability 1 and waiting-

(A1)

time distribution 1/)( ) 1)- From there it can go directly to
1) or
it can return to the original site (probability %, waiting-

time distribution 1,[),(12_)1) and then start the walk all over

a (probability 1 3 and waiting-time distribution 1/),(3_)

again ('(/)n 1—v). Solving Eq. (A1) for 1/;21)1-1; we find
i w‘” 7® (s
B = e (42

¢“_’1(s)¢<2> (s)

For the second case shown in Fig. 3(a) we similarly reason
the relation

1/",'(372)_ (1) Z( ¢(3) (1)1)1 [¢(3) (3) (1)]

(A3)

The walker leaves the vertex 0 (probability 1, waiting-

time distribution '¢V,(Ll_)1) and goes to site 1. From there it
can walk back and forth to site 1’ any number of times
(probablhty to go from 1 to 1’ and probability 1 to re-

turn to 1, each leg with waiting-time distribution zﬁ(l) ).
Then the walker can either go to site a to end the Walk
(probability 1 and waiting time distribution 1/),(11_)
can return to the vertex 0 (probability %

1) or it
and waiting-

time distribution 1/) ) 1) and start all over again (1/;(1))

Performing the sum over n and solving for ¢ yields
7(1) 7(3)
J0) = Ll‘/’_
Ynw = 355 @ (A4)

Finally, we combine the results (A2) and (A4) to obtain
for the Laplace transform of the waiting-time distribution
to go from a dead-end vertex to its (n+ 1)st neighbor the
relation

PO = (1-v)PpN_, + o)

1/)(1)111)(2) ,¢,(1) 11/}(3)

=(1-v) v .
2-90070, 32,

(A5)

Next consider a walker that leaves a vertex 0 from
which two units emerge. In this case we have [cf.

Fig. 3(b)]
IZJ‘ELZ) =(1 ) ¢(2(1 v)? + 2U(1 - ’U)’l/}n ,v(1—v) + UZI‘/;T(zz,z;z'
(A6)
The first contribution to (A6) satisfies
11)(,(1 oy = (2)1[ q/)(2) 1/)(2) ¢(2(1 v)z] (AT)

since the walker first goes to a nearest neighbor (prob-
ability 1 and waiting-time distribution 1/)£2ll) and then
either goes to a next-nearest neighbor thus ending the
walk (probability %, waiting-time distribution 1/11(12_)1) or
returns to the origin (probability 3, waiting—time distri-
bution 1/;( )1 and begins walking again (1/) (1 v)2) Solv-
ing (A7) yields
: 7,(2)
- [ton-4]?
P e = e (A8)
S R CIRNE

For the second contribution to (A6) we find

7(2 2 2 7(2)

112, — (153 GOy
(13D + 153 ¢fl23,(1-v)]v (A9)

which easily leads to

[B2,0%03
{4- 52,23

11”,7(3_)11/;(1) ]+2¢(2)1¢(3)
_1/;(3_)111)(1)1] (2) (3) ’
(AlO)

7(2)
djn ,o(l— v)

Reasoning in a similar way for the third contribution
leads to the relation

= 50
¢1(122;2 — ,‘/)(2) 2(3 (3) )J
=0
<392, + 19093, (A1)
from which we immediately obtain
7.(2) (3)
52 Yno1¥n- (A12)

¢n'u = - :
Ty ® g _¢(2) AR

n—1¥n—1 n—1

A walker that leaves a vertex 0 from which three units
emerge encounters the possibilities shown in Fig. 3(c):

7 3)
"/’5;3) = (1 ) "/’( (- v)a + 3'”(1 - v) "/)n Jo(1—v)2

+302 (1 —v)p, o, (A13)
The first contribution to (A13) satisfies
1/]7(321 oy _1/)(3) [ 1/)(2) 1/)(2) ¢1(—321—v)3]’ (A14)
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which leads to

(2)
Ve o
1/1(3 N e (A15)
n,(1—v)3 _¢(3) 1/,(2)
The second contribution to (A13) satisfies
’/’7\133,(1—1;)2 = 2[39%2, + 392 ’/’7(;33;(1~v)2]
¢(3) Z( ¢(3) w(l) )j
=0
x[L ¢(3) ¢(3) 1/,1(133)(1_11)2] (A16)
from which one obtains
= 3
5@ ) + 921 n 2 (3 = B,2302)
nw(l-v)2 = (3 - ¢(2) (3)1)(3 ¢(1) (3)1) [& (3)1]2
(A17)
The third term in (A13) satisfies
= 2 3
1/]7(:3:2(1—11) = %[%"/’(2) + z‘/’( )ﬂb( 3)2(1—1))]
,¢,(3) Z( ¢(3) (1)1)1
=0
><[ ¢(3) 1/)(3) 157(?2’2(1_”)], (A18)
which yields
7 (3
11)1(1,212(1—1))
3 4[¢(3)1]2 123(2) ,‘/)(3) ( _1/;(1) ,(/)(3) )
(6 — (2) (3)1)(3 (1) (3)1) [,¢,(3) ]
(A19)

For the fourth term in (A13) we have

d;,(:i),a— (3) Z ¢(3)1,¢)(1) )

x[3932, + 192,981, (A20)
which results in
~ [ (3) ]2
¢1(131)J3 = —1 (A21)

3= a2 — 9 iy

Finally, consider the renormalization equation for the
dead-end vertex in the generalized quasirandom model
as an illustration of the way in which the calculations
are carried out in this more general case. The walker
leaves the dead-end vertex and arrives at an intersection
from which emerge k + 1 units. One of these units leads
back to the original vertex, one leads to the next-nearest
neighbor where the walk ends, and the remaining k¥ — 1
units lead to other dead ends from which the walker has
to return to the intersection, perhaps repeatedly. Our
usual reasoning then leads to the relation

,(/J511732k — ¢(1) Z (k " l,d)( +1)1/)(1) )

=0

* [ T 1] D + 900 (A22)

The solution of this equation immediately leads to (4.18).

* Permanent address: Departamento de Fisica Aplicada I,
Universidad Complutense, 28040 Madrid, Spain.

[1] T. A. Witten and L. M. Sanders, Phys. Rev. Lett. 47,
1400 (1981).

[2] M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and
Y. Sawada Phys. Rev. Lett. 53, 286 (1984); Y. Sawada,
A. Dougherty, and J. Gollub, ibid. 56, 1260 (1986); D
Grier E. Ben-Jacob, R. Clarke, and L. Sander, :bid. 56,
1264 (1986).

[3] J. K. Kjems, in Fractals and Disordered Systems, edited
by A. Bunde and S. Havlin (Springer-Verlag, Berlin,
1991).

[4] G. Radnocz, T. Vicseck, L. M. Sander, and D. Grier,
Phys. Rev. A 35, 4012 (1987).

[5] R. Xiao, J. Alexander, and F. Rosenberg, Phys. Rev. A
38, 2447 (1988).

[6] J. Lee, A. Coniglio, and H. E. Stanley, Phys. Rev. A 41,
4589 (1990).

[7] J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127
(1990).

[8] According to the American Heritage Dictionary, the word

decimate “should not be used to describe the destruc-
tion of any specified percentage other than 10%.” It is
nevertheless frequently used this way and we follow this
colloquial practice.

[9] J. Machta, Phys. Rev. B 24, 5260 (1981)

[10] C. Van den Broeck, Phys. Rev. Lett. 82, 1421 (1989);
Phys. Rev. A 40, 7334 (1989); in Proceedings of the Ir-
reversible Processes and Self-Organization-4 Conference
Rostock, 1989, edited by W. Ebeling and H. Ulbricht
(Teubner-Texte zur Physik, Leipzig, 1991).

[11] J. M. R. Parrondo, H. L. Martinez, R. Kawai, and K.
Lindenberg, Phys. Rev. A 42, 723 (1990).

[12] B. B. Mandelbrot and T. Vicsek, J. Phys. A 22, L377
(1989).

[13] H. L. Martinez, J. M. R. Parrondo, and K. Lindenberg,
following paper, Phys. Rev. E 48, 3556 (1993).

[14] E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167
(1965); E. W. Montroll and B. J. West, Fluctuation Phe-
nomena, edited by E. W. Montroll and J. L. Lebowitz
(North-Holland, Amsterdam, 1987).

[15] S. Havlin and D. ben-Avraham, Adv. Phys. 36, 695



48 DIFFUSION ON DETERMINISTICAND ... . L ... 3555

(1987). Meakin, and I. Procaccia, ibid. 56, 854 (1986); P. Meakin,
[16] A. Blumen, J. Klafter, and G. Zumofen, Optical Spec- R. C. Ball, R. Ramanlal, and L. M. Sander, Phys. Rev.

troscopy of Glasses, edited by I. Zschokke (Reidel, Dor- A 35, 5233 (1987); P. Ossadnik, ibid. 45, 1058 (1992).

drecht, 1986). [18] P. Meakin and H. E. Stanely, Phys. Rev. Lett. 51, 1457
[17] A. Arneodo, F. Argoul, E. Bacry, J. F. Muzy, and M. (1983).

Tabard, Phys. Rev. Lett. 68, 3456 (1992); T. Halsey, P.



